	Versio	n No.				1	ROL	L NUN	1BER	1	1	LINERMEDIATE AND SECO
0 1 2	0 1 2	0 1 2	0 1 2		① ① ②	0 1 2	① ① ②	0 1 2	0 1 2	0 1 2	0 1 2	TO THE BOARD OF TH
1 2 3 4 5 6 7 8 9	345	345	(3) (4) (5)		345	(3) (4) (5)	3 4 5	3 4 5	3 4 5	3 4 5	(3) (4) (5)	Answer Sheet No
(6) (7) (8)	6 7 8	6 7 8	(6) (7) (8)		5 6 7 8	6 7 8	(6) (7) (8)	(6) (7) (8)	(6) (7) (8)	6 7 8	6 7 8	Sign. of Candidate
9	9	9	9		9	9	9	9	9	9	9	Sign. of Invigilator
					9	SECT	ION -	TIC - A (Med: 25	Iarks		I	
over t	o the C	Centre	Super	inten	dent.	Deleti	ng/ove	erwriti	ng is 1	not allo	owed. l	on this page and handed Do not use lead pencil.
Q.1							_	_		•	ne ma	
	1.	In c		ex nu	mbers	s, what	t is the		plicat 3.	1	erse of	? 2 <i>i</i> ?
		C.	$\frac{-i}{2}$).).	2 <u>i</u> 2		
	2.	Wh				llowin	g repr	esents	the no	- egatior		e statement $\sim p \rightarrow q$?
		A. C.		$q \rightarrow q$ $\rightarrow \sim q$	-	\bigcirc			3.).	$\sim q \rightarrow p \rightarrow \infty$	-	0
	3.	Wh	-		•	α , if	2 3 9			1 1 5		
		A.	3				2 15	Ŀ	3.	6	11	\bigcirc
		C.	9			\bigcirc		Ι		15		\bigcirc
	4.				lution	set of	an eq			$+\frac{1}{x^{-1}}$		
		A. C.	{1 {0	.}), -1}	ļ	\bigcirc		E T	3.)	$\{-1, 1\}$. }	\bigcirc
	5.					$+kx^{2}$	2-x					of k is:
		A.	—: —:			\bigcirc		E	3.	2		\bigcirc
		C.				\circ	7×±25		Э.	0		O
	6.	The	partia	al fra	ctions	of $\frac{x}{(x+1)}$	-3)(x+	$\frac{1}{4}$ are				
		A.	$\frac{3}{x+}$	$\frac{1}{4} + \frac{1}{3}$	3 r+3	\bigcirc		F	3.	$\frac{3}{x+4} + \frac{3}{x+4} + \frac{3}$	$\frac{4}{x+3}$	\bigcirc
		C.	$\frac{4}{x}$	$\frac{1}{4} - \frac{1}{2}$	3 x+3_	0	0	Ι	Э.	$\frac{-4}{x+4}$ +	$\frac{3}{x+3}$	\bigcirc
	7.	For	an A.	P: 2	$+\frac{7}{2}+$	$-5 + \frac{1}{3}$	$\frac{13}{2} + \cdots$	$+ a_{10}$, the	value o	of S_{10} i	s:
		A.	26 2	5 95		\bigcirc		F	3.	$\frac{175}{2}$		\bigcirc
		C.	-	2		\bigcirc		Ι	Э.	195		\circ

8.	What	should be the g	geometric mean	betweei	$1\sqrt{2}$ and $3\sqrt{2}$?	
	A.	$\frac{6}{\sqrt{2}}$	\bigcirc	B.	$6\sqrt{2}$	\bigcirc
	C.	$2\sqrt{2}$	\bigcirc	D.	$\sqrt{6}$	\bigcirc
9.		hat value of n ,	$^{n}P_{2} = 12$?		_	
	A. C.	4 12	\bigcirc	B. D.	3 6	\bigcirc
10.			Cair coins, what i		obability of appearing	both tails?
	A.	$\frac{3}{4}$		В.		\bigcirc
	C.	<u>1</u>	\bigcirc	D.	2 4 2 3	\bigcirc
11.		one of the following	lowing is an exp			
	A.	$1-x+x^2$	$x^2 - x^3 + \dots$	\bigcirc		
	B.	$1 + x - x^2$	$+ x^3 +$	\bigcirc		
	C. D.	$1 + x + x^2$ $1 - x - x^2$	$x^{2} + x^{3} + \dots$	\bigcirc		
				\circ	$\left[\left(\frac{1}{2} \right)^{\frac{1}{2}} \right]^{60}$	
12.	How 1	many terms are	there in the exp	ansion	of $\left[\left(x - \frac{1}{x} \right)^{\frac{1}{2}} \right]^{60}$?	
	A.	30	\bigcirc	Б.	31	\bigcirc
	C.	15	\bigcirc	D.	16	\bigcirc
13.			lowing is the sin		form of $\frac{1}{1+\sin\theta} + \frac{1}{1-\sin\theta}$	$\frac{1}{i\theta}$?
	A. C.	$\sec \theta$ $2\sec^2 \theta$	\bigcirc	B. D.	$\sec^2 \theta$ $2\sec \theta$	\bigcirc
14.			Ult if simplify c			$-\frac{\pi}{2}$
14.	A.	cosx		озл — _[В.	$\frac{\cos\left(x + \frac{\pi}{2}\right) + \cos\left(x - \frac{\pi}{2}\right)}{2\cos x}$	- 2)] :
	C.	0	\bigcirc		$(1-\sqrt{3})\cos x$	\bigcirc
15.			one of the follow		,	O
	A.	$\cos 2\theta = \cos \theta$			0	
	B.	$sin2\theta = 2sin$	(0)		O	
	C.	$\sin\theta = -2 \mathrm{s}$			O	
	D.	$cos\theta = cos^2$	$\left(\frac{\theta}{2}\right) + \sin^2\left(\frac{\theta}{2}\right)$		0	
16.	What	is the period of	a trigonometric	function	on $\sin\left(\frac{\pi x}{2}\right)$?	
	A.	2	\bigcirc	B.	4	\bigcirc
	C.	$\frac{1}{2}$	\bigcirc	D.	$\frac{1}{4}$	\bigcirc
17.		iangle ABC, w	hat will be e-rad		posite to vertex A ?	
	A.	$\frac{2}{s-a}$	\circ	В.	s-b	\bigcirc
	C.	$\frac{s-a}{\Delta}$ $\frac{s-c}{s-c}$	0	D.	$\frac{s-a}{\Delta}$	\bigcirc
18.	The v	alue of sec sin	$n^{-1}\left(-\frac{1}{2}\right)$] is:			
	A.	$\frac{2}{\sqrt{2}}$	\circ	B.	$\frac{-2}{\sqrt{3}}$	\bigcirc
	C.	$\frac{2}{\sqrt{3}}$ $\frac{1}{2}$	\bigcirc	D.	$-\frac{1}{2}$	\bigcirc
19.	If sin	$-1^{2}x + (\sin^{-1}x)$	$(x + \cos^{-1} x) = x$	au , then	value of x is:	
	A.	1 2	\bigcirc	B.	$\frac{1}{\sqrt{2}}$	\bigcirc
	C.	0	\bigcirc	D.	- 1	\bigcirc
20.	Which		lowing is a solut	ion set	of $\sin x = \frac{1}{2}$, where $x \in$	$[0,2\pi]$?
	A.	$\left\{\frac{\pi}{6}, \frac{\pi}{2}\right\}$	\bigcirc	B.	$\left\{\frac{5\pi}{6}, \frac{3\pi}{2}\right\}$	\bigcirc
	C.	$\left\{\frac{\pi}{6}, \frac{5\pi}{6}\right\}$	\bigcirc	D.	$\left\{\frac{\pi}{3}, \frac{5\pi}{3}\right\}$	\bigcirc
		(0 0)			(3 3)	

Federal Board HSSC-I Examination Mathematics Model Question Paper (Curriculum 2000)

Time allowed: 2.35 hours Total Marks: 80

Note: Sections 'B' and 'C' comprise pages 1-2 and questions therein are to be answered on the separately provided Answer Book. Write your answers neatly and legibly.

SECTION - B (Marks 48)

Q.2 Attempt any TWELVE parts. All parts carry equal marks. $(12 \times 4 = 48)$

i. If
$$z_1=1-2i,\ z_2=2+3i,\ z_3=4-3i$$
 , then find
$$(a)\overline{z_2\over z_3} \quad (b)\overline{z_1}\cdot\overline{z_3}$$

and write in the form a + ib.

ii. Convert the following to logical form and prove it by constructing truth table:

$$A \cap B = B \cap A$$

iii. If
$$\begin{vmatrix} x & 1 & x+1 \\ 2 & x & 3 \\ x+1 & 4 & x \end{vmatrix} = 11 - 2x^2$$
, then find the value of x .

iv. Find the real roots of $\frac{18}{x^4} + \frac{1}{x^2} = 4$.

v. Resolve $\frac{3x^2+7x+28}{x(x^2+x+7)}$ into Partial Fractions.

vi. Prove that cosine is a periodic function and its period is 2π .

vii. The sum of first thirty terms of an A.P is equal to square of sum of first six terms of the same A.P. Show that $10a + 145d = 12a^2 + 60ad + 75d^2$.

viii. A committee of 4 persons has to be chosen from 8 boys and 6 girls, consisting of at least one girl. Find the probability that the committee consists of more girls than boys.

ix. How many automobile license plates can be made, if each plate contains three different letters (from A to Z) followed by four different digits (from 0 to 9)?

x. Find the first four terms, in ascending powers of x, in the binomial expression of $\frac{1}{\sqrt{9+x}}$.

xi. A regular Pentagon is inscribed in a circle of radius 15 *cm*. Approximate the perimeter of the Pentagon.

xii. Prove the trigonometric identity $\frac{\sin 3\theta + \sin 5\theta + \sin 7\theta}{\cos 3\theta + \cos 5\theta + \cos 7\theta} = \sin 5\theta$

xiii. Draw the graph of $y = \sec x$, $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

xiv. Prove that $s^2 = \Delta \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$

xv. Prove that $\cot^{-1} \frac{119}{120} = 2\sin^{-1} \frac{5}{13}$.

xvi. Show that $2 \tan^2 \theta \cos \theta = 3$ can be written in the form $2\cos^2 \theta + 3\cos \theta - 2 = 0$ and solve the equation $2 \tan^2 \theta \cos \theta = 3$ for $0 \le \theta \le 2\pi$.

SECTION – **C** (Marks 32)

Note: Attempt any **FOUR** questions. All questions carry equal marks. $(4 \times 8 = 32)$

- Q.3 Solve the system of equations by reducing its augmented matrix to the reduced echelon form: x + 2y + 3z = 3; 2x + 3y + z = 1; 3x + y + 2z = 2
- Q.4 In any triangle ABC, with usual notations, prove that:
 - (a) $a^2 = b^2 + c^2 2bc \cos x$
 - (b) $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin r}$
- Q.5 (a) Identify the series if its nth term is $a_n = \frac{4}{5} \left(\frac{2}{3}\right)^{n-1}$
 - (b) What is the sum of first ten terms of the series.
- Q.6 If $y = -\frac{1}{3} + \frac{1}{3^3} + \frac{1 \cdot 3}{2!} \cdot \frac{1}{3^5} + \frac{1 \cdot 3 \cdot 5}{3!} \cdot \frac{1}{3^7} + \dots$, then prove that $63y^2 + 84y + 19 = 0$
- Q.7 Prove the following trigonometric identity without using calculator/Trigonometric tables. $cos \frac{\pi}{18} . cos \frac{\pi}{6} . cos \frac{5\pi}{18} . cos \frac{7\pi}{18} = \frac{3}{16}$
- Q.8 ABC is a right angled triangle with $m \angle B = 90^{\circ}$, $m \angle A = 30^{\circ}$ and $m \overline{AB} = 3cm$
 - (a) Solve the triangle ABC.
 - (b) Find the area (Δ)of triangle ABC.
 - (c) Find the radius (R) of circum-circle of triangle ABC.
 - (d) Find the radius (r) of in-circle of triangle ABC.

MATHEMATICS HSSC-I Student Learning Outcomes Alignment Chart (National Curriculum 2000)

a .	Q 1	Contents and Scope	Student Learning Outcomes						
Sec-A	~ -		To know the additive and multiplicative identities						
	1	Concept of complex numbers and basic operations on them	of complex numbers and to find their additive and multiplicative Inverses.						
	2	Logical proofs of the operation on sets	Introduction to the logical statements and their composition (common connectives, negation, conjunction, disjunction, conditional and bi-conditional).						
	3	Determinants and their application in the study of the algebra of matrices	Concept of a determinant of a square matrix, expansion of the determinant up to order 4 (simple cases).						
	4	Revision of the work done in previous classes	Solving a quadratic equation in one variable by: (a) factorization (b) completing the square and (c) quadratic formula						
	5	Application of Remainder Theorem in the solution of equations	To apply the Remainder Theorem in finding one or two rational roots of cubic and quadratic equations, to use synthetic division in finding depressed equations for solving them.						
	6	Partial Fractions	To reduce a fraction into partial fractions when its denominator consists of (a) Linear Factors						
	7	Arithmetic Series	To establish the formula for finding the sum up to <i>n</i> -terms of an arithmetic series and be able to apply this formula. To find the Geometric Mean and insert n-G.Ms between two positive real numbers and be able to solve problems based on them.						
	8	Geometric Mean							
	9	Permutations	To understand the meaning of permutation of n different things taken r at a time and know the notation ${}^{n}P_{r}$ or $P(n, r)$.						
	10	Probability (Basic concepts and estimation of probability)	To know the formula for finding the probability.						
	11	Binomial Theorem for negative integral and rational indices	To apply the theorem in the expansion of the binomial expressions with rational indices as infinite series and arithmetical computations.						
	12	Binomial Theorem for positive integral index	To state and prove the binomial theorem for positive integral index, find the number of terms						

	<u> </u>	1 1, 1, 1 1 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,					
		and general terms in the expansion of $(a + b)^n$ and apply it to expand positive integral powers					
		of the binomials and find their particular terms					
		(without expansion).					
		To establish the following relations between the					
		trigonometric ratios;					
		$cosec \theta = 1/sin \theta,$					
		$sec \theta = 1/cos \theta,$					
		$\cot \theta = 1/\tan \theta$,					
		$tan \theta = sin \theta / cos \theta$					
13	Trigonometric Functions	$\cot \theta = \cos \theta / \sin \theta,$					
		$\sin 2\theta + \cos 2\theta = 1,$					
		$1 + \tan 2\theta = \sec 2\theta \text{ and}$					
		$1 + \cot 2\theta = \csc 2\theta$:					
		To be able to apply the above mentioned					
		relations in h) proving the trigonometric identities					
		b)proving the trigonometric identities.					
	Fundamental formulas of	b) To establish the formula					
14	sum and difference of two	$cos(\alpha - \beta) = cos\alpha cos\beta + sin\alpha sin\beta$ and deduction					
1.	angles and their	there from for finding the sum and difference					
	applications	of the trigonometric ratios.					
	Trigonometric ratios of						
15	double angles and half	To find the values the trigonometric ratios of					
	angles	double and half the angles and apply them.					
		To know the domains and ranges of the					
16	Periods of trigonometric	trigonometric functions to have the concept					
10	functions	of period of a trigonometric function and the					
		period of the basic trigonometric functions.					
		To find the modil of					
		To find the radii of					
17	Radii of circles connected	a)Circum circle b)In circle					
1/	with triangles	c)Escribed circle of triangles and to solve					
		problems involving these radii.					
		problems involving these fault.					
		To know the definition of inverse trigonometric					
18	Inverse trigonometric	functions their domains and ranges; to know					
10	functions	the general and principle trigonometric					
		functions their inverses and their values.					
		To know the definition of inverse trigonometric					
		functions their domains and ranges; to know the					
19	Inverse trigonometric functions	general and principle trigonometric functions					
		their inverses and their values; development of					
		formulas for inverse trigonometric functions and					
20	Solution of trigonometric	their application. To solve trigonometric equations and check their					
20	Solution of digonometric	10 solve ingonomente equations and check their					

		equations	answers by substitution in the given equations so as to discard extraneous roots and to make use of the period of trigonometric functions for finding the general solution of the equations.
Sec-B	Q 2 i	Concept of complex numbers and basic operations on them. Conjugate and its properties	To know the four binary operations on complex numbers and their properties. To know the conjugate and modulus of a complex number $z = x + iy$.
	ii	Logical proofs of the operation on sets	To give formal proofs of the commutative, associative and distributive properties of union and intersection.
	iii	Determinants and their application in the study of algebra of matrices	Expansion of the determinants up to order 4. The use of properties of determinants.
	iv	Solution of equations reducible to quadratic equations in one variable	To solve equation reducible to quadratic equations in one variable.
	v	Partial Fractions	To reduce a fraction in to partial fractions when its denominator consists of (c) non-repeated quadratic factors.
	vi	functions	To know the domain and ranges of the trigonometric functions to have the concept of period of a trigonometric function and the periods of the basic trigonometric functions.
	vii	Arithmetic Sequence	To find the nth term of an arithmetic progression (A.P) and solve problems pertaining to the terms of an A.P.
	viii	Combinations	To apply combination in solving problems.
	ix	Permutations	To establish the formula for ${}^{n}P_{r}$ and apply it in solving problems of finding the number of arrangements of n things taken r at a time(when all the n things are different and when some of them are alike) and the arrangements of different things around a circle.
	х	Binomial theorem for negative integral and rational indices	To apply the theorem in the expansion of the binomial expressions with rational indices as infinite series and arithmetical computations.
	xi	Relation between the length of an arc of a circle and the circular measure of its central angle	To establish the rule $\theta = \frac{l}{r}$, where r is the radius of the circle, l is the length of the arc and θ is the circular measure of the central angle of the arc.

	l	T	1					
	xii	Sum, difference and product of trigonometric ratios	To find the formulas for the following: $sin\alpha \pm sin\beta$; $cos\alpha \pm cos\beta$; $2sin\alpha cos\beta$; $2cos\alpha sin\beta$; $2cos\alpha cos\beta$ and $-2sin\alpha sin\beta$ and to be able to apply.					
	xiii	Graphs of trigonometric functions	To draw the graphs of basic trigonometric functions in the domains ranging from -2π to 2π and know that the graphs of these trigonometric functions are repeated depending upon the period of the functions.					
	xiv	Radii of circles connected with triangles	To find the radii of a) Circum circle b) In circle c) Escribed circle of triangles and to solve problems involving these radii.					
	xv	Inverse trigonometric functions	To know the definition of inverse trigonometric functions their domains and ranges; to know the general and principle trigonometric functions their inverses and their values; development of formulas for inverse trigonometric functions and their applicants; to draw the graphs of inverse trigonometric functions.					
	xvi	Solution of trigonometric functions	To solve trigonometric equations and check their answers by substitution in the given equations so as to discard extraneous roots and to make use of the period of trigonometric functions for finding the general solution of the equations.					
Sec-C	Q.3	Solvingsimultaneousline ar system of equations	To be able to solve a systems of linear non-homogeneous equations by the use of (b) echelon and reduced echelon form.					
	4	Cosine formula Sine formula	 ▶ To establish the cosine formula and apply it in the solution of oblique triangles. ▶ To establish the sine formula to apply it in the solution of oblique triangles 					
	5	Sequence and Series ►Introduction	To have the concept of a sequence/progression, its term and its domain, different types of sequences with examples to distinguish between arithmetic, geometric and harmonic sequences; and to determine the sequence when its nth term is known.					
	6	Binomial Series	To be able to identify the given series as binomial expansion and hence find the sum of the series.					
	7	Sum, difference and product of the trigonometric ratios	To find the formulas for the following: $sin\alpha \pm sin\beta$; $cos\alpha \pm cos\beta$; $2sin\alpha cos\beta$; $2cos\alpha sin\beta$;					

		$2\cos\alpha\cos\beta$ and $-2\sin\alpha\sin\beta$ and to be able to apply.
8	Heights and distances	To be able to use the solution of right triangles in solving the problems of heights and distances. To find the radii of a) Circum circle b) In circle of triangles and to solve problems involving these radii.

MATHEMATICS HSSC-I Table of Specifications

Topics	1. Number Systems	2. Sets, Functions and Groups	3. Matrices and Determinants	4. Quadratic Equations	5. Partial Fractions	6. Sequences and Series	7. Permutation, Combinationand Probability	8. Mathematical Inductions and Binomial Theorem	9. Fundamentals of Trigonometry	10. Trigonometric Identities	11. Fundamentals of Trigonometry	12. Application of Trigonometry	13. Inverse Trigonometric Functions	14. Solution of Trigonometric Equations	Total marks for each assessment objective	% age
Knowledge based	1(1)(1) 2(i)(4)	1(2)(1) 2(ii)(4)			1(6)(1)	5(8)	1(9)(1) 1(10)(1)	1(11)(1)			2(vi)(4)	1(17)(1) 4(8)	1(18)(1)		36	27.2%
Understanding based			1(3)(1) 2(iii)(4) 3(8)	1(4)(1) 2(iv)(4)	2(v)(4)	1(8)(1) 2(vii)(4)		1(12)(1) 6(8)	2(xi)(4)	1(14)(1) 1(15)(1) 2(xii)(4)	1(16)(1)	2(xiv)(4) 8(8)	1(19)(1) 2(xv)(4)	1(20)(1) 2(xvi)(4)	69	52.3%
Application based				1(5)(1)		1(7)(1)	2(viii)(4) 2(ix)(4)	2(x)(4)	1(13)(1)	7(8)	2(xiii)(4)				27	20.5%
Total marks for each topic	05	05	13	06	05	14	10	14	05	14	09	21	06	05	132	100%

KEY:

1(1)(1)

Question No. (Part No.) (Allocated Marks)