Version No.				ROLL NUMBER				WERNEDIATE AND BEC			
											AND
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IN THE PARTY OF TH
(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	Et d'amagad
$\underbrace{\check{2}}$	$\underbrace{\check{2}}$	$\overbrace{2}$	$\overbrace{2}$	2	$\overbrace{2}$	$\underbrace{\check{2}}$	$\underbrace{\check{2}}$	$\overbrace{2}$	$\overbrace{2}$	$\underbrace{\check{2}}$	
3	3	3	3	3	3	3	3	3	3	3	Answer Sheet No
(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	
(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	Sign. of Candidate
$\begin{pmatrix} 6 \\ \hline 7 \end{pmatrix}$	(6)	$\begin{pmatrix} 6 \\ \hline 7 \end{pmatrix}$									
$\langle \rangle$	$\langle \rangle$	\bigcirc	$\langle \rangle$		\bigcirc	$\langle \rangle$	$\langle \rangle$	$\langle \rangle$	$\langle \rangle$	\bigcirc	Sign. of Invigilator
(9)	\bigcirc	9	(9)	(9)	9	9	(9)	(9)	(9)	(9)	

COMPUTER SCIENCE SSC-II (2nd Set) SECTION – A (Marks 12) Time allowed: 15 Minutes

Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. **Do not use lead pencil.**

Q.1 Fill the relevant bubble for each part. Each part carries one mark.

(1)	Whic the fl	h symbol is used to ow chart developm	narks from the values given	n by users, in		
	A. C.	Rectangle Diamond	8	B. D.	Parallelogram Oval	\bigcirc
(2)	Whic into s	ch one of the follow steps and arranging	ing proble in order to	em-solvi o solve t	ng stage refers to dividing he problem?	the solution
	A. C.	Planning Defining	$\stackrel{\text{O}}{\circ}$	B. D.	Analyzing Selecting	$\stackrel{\text{O}}{\circ}$
(3)	Whic and r	th of the software exercise the errors	xamines th ?	ne values	s stored in variables and he	elp in finding
	A.	Loader	0	B.	Linker	0
	C.	Editor	0	D.	Debugger	0
(4)	What	t is the range of nun	nbers that	can be s	stored in a variable of type	float?
	А	$10^{-38} - 10^{38}$	0	В.	$10^{-308} - 10^{308}$	0
	C.	$10^{38} - 10^{38}$	0	D.	$10^{-38} - 10^{32}$	0
(5)	Whic funct	th symbol with the vion:	variable, ro	efers to	the memory location in sca	anf()
	A.	#	\bigcirc	B.	\$	\bigcirc
	C.	%	Ŏ	D.	&	Ŏ
(6)	What $z = b$	t is the value of "z" /2 + b * 4 / b &&	after eval b < a + a /	uating tl 3	he given expression where	a = 5, b = 3?
	A.	5	\bigcirc	B.	0	\bigcirc
	C.	1	Ŏ	D.	6	Ŏ
(7)	What $z = 4$	t is the value of "z" *++x y <x%2&&< td=""><td>after evalu x+y</td><td>uating th</td><td>ne given expression where</td><td>x=10, y=3?</td></x%2&&<>	after evalu x+y	uating th	ne given expression where	x=10, y=3?
	A.	41	Ó	B.	0	0
	C.	1	Ŏ	D.	40	Ŏ

(8) What is the output of the following codes where $a=1$ and $b=5$? if $(a-b<6)$											
		printf('	'%d", a);								
	else										
	printf("%d", b);										
	printf("%d", a+b);										
	A.	1	0	B.	5	0					
	C.	15	0	D.	16	0					
(9)	Which	one of the followin	g is a valio	l statem	nent for "For loop"?						
	A.	for(;;)	0	B.	for(int I =1; ;)	0					
	C.	for(; ;k++)	0	D.	All of these	0					
(10)	Which	logic gate is represe	ented by th	ne funct	ion = (\overline{xy}) ?						
	A.	NAND	0	B.	NOR	0					
	C.	Exclusive-OR	0	D.	Exclusive-NOR	0					
(11)	A com	puter that makes the	e web page	es availa	able through the internet is	called:					
	A.	website	0	B.	web-server	0					
	C.	web-browser	0	D.	web-link	0					
(12)	Which	part of the web add	ress tell th	e serve	r type of file is being reque	sted?					
	A.	WWW	0	B.	http://	0					
	C.	.html	0	D.	URL	0					

Federal Board SSC-II Examination **Computer Science Model Question Paper** (Curriculum 2009)

Time allowed: 2.45 hours

Note: Answer any nine parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION – B (Marks 27)

Q.2	Attem	pt any NINE parts from the following. All parts carry equal marks. (9×3)	3 = 27)								
	i.	What are the features to select the best solution of a problem? $(1+1+1)$									
	ii.	Write an algorithm to find the sum, product and average of five given numbers? $(1+1+1)$									
	iii.	Briefly describe the three fundamental element of structured programm language?									
	iv.	What happens if header-files were not used in C program? List at header-files with their purpose									
	v. Compare printf() and puts() function with at-least one example.										
	vi. Write at-least three differences between format specifiers and escape se characters.										
	vii. Draw precedence table of operators used in the following expression: $z = !(4^{*}+x-y x==y/-y$										
	viii. Differentiate between if-else-if and switch structure.										
	ix.	Write a code that prints the given sequence of numbers on a single line also its sum by using any loop. 30 27 24 21 18 15 12 9 6 3 0 -3 -6 -9	print (2+1)								
	x.	Write the output of each gate shown in the following figure:	(3)								
	xi.	Differentiate between ordered list and unordered list used in HTML.	(3)								
	xii.	Define the following terms:(1+1-)a.Web-Hostingb.Web-Serverc.Hyper-L	+1) ∠ink								
	xiii. Differentiate between Frame and Frame set by giving one example used in HTML. (3)										
		SECTION – C (Marks 16)									
Note:	Attem	pt any TWO questions. (8×2)	= 16)								

Q.3 Write a C program to input electricity unit charge and calculate the total electricity bill according to the given condition: (5+3)For first 50 units Rs. 0.50/unit For next 100 units Rs. 0.75/unit

For next 100 units Rs. 1.20/unit For unit above 250 Rs. 1.50/unit An additional surcharge of 20% is added to the bill. Also justify your selection of conditional control structure.

- Q.4 Write a program that read a number and prints its power (take it from user) if it is a prime number otherwise print its factorial by using any control structure. (8)
- Q.5 a. Briefly describe NOR and Exclusive NOR(XNOR) logic gate with circuit diagram and truth table. (4)
 - b. Define Karnaugh Map(K-Map) also write the simplification rules for three variable Karnaugh Map. (4)

* * * * *

COMPUTER SCIENCE SSC-II (2nd Set)

(Curriculum 2009) Student Learning Outcomes Alignment Chart

Sr No	Section: Q. No. (Part no.)	Contents and Scope	Student Learning Outcomes	Cognitive Level **	Allocated Marks in Model Paper
1	A: 1(i)	1.3 Flow Chart	(iv) Use of flow chart symbols	U	1
2	A:1(ii)	1.1 Understanding the Problem	iii) Plan the solution of problem	K	1
3	A: 1(iii)	2.2 Programming Environment	ii) Explain the following modulesof the C programming environmentDebugger	К	1
4	A: 1(iv)	2.4 Constants and Variables	iii) Know the following data types offeredby C and the number of bytes taken byeach data type • Floating point – float	K	1
5	A: 1(v)	3.1 Input / Output functions	ii) Use input functions like: • scanf ()	К	1
6	A: 1(vi)	3.2 Operators	 ii) Use the following arithmetic operators: Addition (+) • Subtraction (-) • Multiplication (*) • Division (/) Remainder (%) iii) Use the following assignment operators: • Assignment operator (=) Compound assignment operator (+=, -, =, * =, /=, % =) • Increment operator (++) Prefix - Postfix • Decrement operator () Prefix - Postfix v) Use the following relational operators: • Less than () • Less than or equal to (<=) • Greater than or equal to (>=) • Equal to (==) • Not equal to (!=) vii) Use of the following logical operators: • AND (&&) • OR () • NOT (!) 	U	1
7	A: 1(vii)	3.2 Operators	 ii) Use the following arithmetic operators: Addition (+) • Subtraction (-) Multiplication (*) • Division (/) 	U	1

			 Remainder (%) iii) Use the following assignment operators: • Assignment operator (=) • Compound assignment operator (+=, -, =, * =, / =, % =) • Increment operator (++) • Prefix - Postfix • Decrement operator () • Prefix - Postfix v) Use the following relational operators: • Less than () • Less than or equal to (<=) • Greater than or equal to (>=) • Equal to (==) • Not equal to (! =) vii) Use of the following logical operators: • AND (&&) • OR () • NOT (!) 		
8	A: 1(viii)	4.1 Control Structure	vi) Use if-else statement	U	1
9	A: 1(ix)	5.1 Loop Structure	 ii) Know that for loop structure is composed of: • For • Initialization expression • Test expression • Body of the loop • Increment / decrement expression 	U	1
10	A: 1(x)	6.2 Logic Gates	iv) Explain the following logic gates with the help of truth tables: NOR	U	1
11	A: 1(xi)	7.1Introduction	i) Define the following terms: Web Server	Κ	1
12	A: 1(xii)	7.1 Introduction	i) Define the following terms: • Uniform Resource Locator (URL)	U	1
13	B: 2(i)	1.1 Understanding the Problem	v) Select the best solution on the basis of:Speed • Cost • Complexity	K	1+1+1
14	B: 2(ii)	1.2 Algorithm	iv) Write algorithms for solving the following problems: - • To find the sum, product and average of five given numbers	U	1+1+1
15	B: 2(iii)	2.1 Introduction	ii) Explain the following levels of programming languages • Structured language	К	1+1+1
16	B: 2(iv)	2.3 Programming Basics	i) Define header files	U	1+2
17	B: 2(v)	3.1 Input / Output functions	i) Use output functions like: • printf ()	U	3
18	B: 2(vi)	3.1 Input / Output functions	iv) Define Format specifiersv) Define an escape sequence	U	3

19	B: 2(vii)	3.2 Operators	xi) Define and explain the order of precedence of operators	U	1+2
20	B: 2(viii)	4.1 Control Structure	x) Differentiate among all selection structures	U	3
21	B: 2(ix)	5.1 Loop Structure	viii) Write codes for flowcharts discussed in unit-1	А	2+1
22	B: 2(x)	6.2 Logic Gates	iii) Explain a truth table.	K	3
23	B: 2(xi)	7.4 Creating Lists	iii) Differentiate between ordered list and unordered list	U	1+1+1
24	B: 2(xii)	7.1 Introduction	i) Define the following terms: Web Server• Web Hosting	К	1+2
25	B: 2(xiii)	7.8 Creating Frames	ii) Differentiate between a frame and a frameset	U	3
26	C: 3	4.1 Control Structure	ix) Use nested selection structures	A+U	5+3
27	C: 4	5.1 Loop Structure	viii) Write codes for flowcharts discussed in unit-1	А	8
28	C: 5	 a. 6.2 Logic Gates b. 6.3 Simplification using K Maps 	 iv) Explain the following logic gates with the help of truth tables: • NOR • Exclusive NOR (XNOR) iii) Simplify three variable Boolean function/expression 	K	4+4

**Cognitive Level K: Knowledge U: Understanding A: Application

COMPUTER SCIENCE SSC-II (2nd Set) Table of Specification

Assessment Objectives		UNIT 1 PROGRAMMING TECHNIQUES 10%	Unit 2: ROGRAMMING IN C 10%	Unit 3: INPUT / OUTPUT HANDLINGC++ 15%	Unit 4: CONTROL STRUCTURE 15%	Unit 5: LOOP STRUCTURE 15%	Unit 6: COMPUTER LOGIC AND GATES15%	Unit 7: WORLD WIDE WEB AND HTML 20%	Cognitive level Marks	Cognitive level Total marks: 75	Cognitive level %
dge	Section A	1-ii-(01)	1-iii-(01) 1-iv-(01)	1-v-(01)				1-xi-(01)	05		
knowle	Section B	2-i-(03)	2-iii-(03)					2-xii-(03)	09	22	29.3%
×	Section C						5(08)		08		
nding	Section A	1-i-(01)		1-vi-(01) 1-vii-(01)	1-viii-(01)	1-ix-(01)	1-x-(01)	1-xii-(01)	07		
Understa	Section B	2-ii-(03)	2-iv-(03)	2-v-(03) 2-vi-(03) 2-vii-(03)	3(03) 2-viii-(03)		2-x-(03)	2-xiii-(03) 2-xi-(03)	30	37	49.3%
	Section C								-		
uo	Section A								-		
cati	Section B					2-ix-(03)			-	16	21.3%
Appli	Section C				3(05)	4(08)			16	-0	
Tot	al marks	8	8	12	12	12	12	11	7	/5	100%

KEY: 1-i-(01) Q. No - Part No - (Allocated Marks)

- Note: (i) The policy of FBISE for knowledge based questions, understanding based questions and application based questions is approximately 30% knowledge based, 50% understanding based, 20% application based.
 - (ii) The total marks specified for each unit/content in the table of specification is only related to this model question paper.

(iii) The level of difficulty of the paper is approximately 40% easy, 40% moderate, 20% difficult